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Introduction

It is now well established that there is a chiral crossover transition in QCD
from a hadron to Quark Gluon plasma phase at Tc = 154(9) MeV.

[http://www.bnl.gov/rhic/news]
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Introduction

It is now well established that there is a chiral crossover transition in QCD
from a hadron to Quark Gluon plasma phase at Tc = 154(9) MeV.

What are the degrees of freedom of QCD at finite temperature and the
interactions between them?

How reliably can weak coupling perturbative calculations describe the QGP?

Lattice calculations also provide a baseline for the observations of
fluctuations of conserved charges from Heavy Ion collision experiments.

[http://www.bnl.gov/rhic/news]
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Basic observables: Fluctuations of conserved charges

Measure the fluctuations of conserved charges in a Grand Canonical
ensemble

χXY
ij =

∂ i+j

∂µ̂X
i ∂µ̂

Y
j

PQCD(µx ,T )/T 4 , χX
i =

∂ i

∂µ̂X
i

PQCD(µx ,T )/T 4
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Here charge X ≡ baryon number, strangeness, charm, electric charge.

The derivatives of pressure can be written in terms of trace of D and its
derivatives: Like: χu

2 = 〈Tr [D−1D ′′ − D−1D ′D−1D ′]〉+ 〈Tr [D−1D ′]2〉.
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∂ i
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i

PQCD(µx ,T )/T 4

Here charge X ≡ baryon number, strangeness, charm, electric charge.

The derivatives of pressure can be written in terms of trace of D and its
derivatives: Like: χu

2 = 〈Tr [D−1D ′′ − D−1D ′D−1D ′]〉+ 〈Tr [D−1D ′]2〉.

No. inversions increases for higher fluctuations→ numerically expensive.
Techniques developed like analytic continuation from imaginary chemical
potential data [ S. Borsanyi, 15 ] and recent advances in programming [ P. Steinbrecher’s,

Kate Clark’s Talk ] to address these issues.
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The fluctuations near Tc

Ratios of fluctuations ΣQB
r = 0.4

χ
B
2

χ
Q
2

are the simplest to compute.

Even these simple observables already show a deviation from Hadron
Resonance Gas (HRG) Model at T > 140 MeV. [ Bielefeld-BNL collaboration, 15]
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Is Hadron Resonance Gas a good approximation for QCD

below Tc?

When there are no inelastic collisions⇒ the ensemble can be described by a
gas of all measured hadrons and possible resonances (HRG) [Dashen, Ma and

Bernstein, 69,71]

lnZ = ±
∑

i

gi
V

2π2

∫

∞

0

dpp2 ln
(

1± e
β(ǫi−µi)

)

,

ǫi =
√

p2 +m2
i ≃ mi & µi = µBBi + µSSi + µCCi + µI Ii .

Residual interactions ∝ ninj ∼ e
−(mi+mj)/T suppressed.

A virial expansion can be used to estimate the effect of interactions.

Scattering phase shifts from expt used to calculate interaction cross-section.

HRG a good approximation if resonances very near to two particle threshold.
[ Prakash & Venugopalan, 92]

For light hadrons validity of HRG needs to be checked! For charm it is
expected to work.
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HRG and Freezeout data from experiments

Chemical freezeout ⇒ the hadrons do not scatter inelastically.

Compare the ratio of particle yields from theory and experiments and
perform a χ2 minimization in the T − µB plane.

If indeed a thermalized medium is formed ⇒ get T f and µf
B

corresponding to the collision energy of two heavy nuclei.

Caveats: Issues about thermalization, expanding system, momentum
cut etc..
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Freezeout curve for a thermalized medium

Freezeout curve parametrized as T = Tf ,0(1− κf2µ
2
B/T

2
f ,0).
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r (0) +
[

ΣQB,2
r − κf2 Tf ,0

dΣQB,0
r

dT
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µ
2
B
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(
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An estimate of ΣQB
r and RB

12 from experiments allows us to calculate
c12. [ Bielefeld-BNL collaboration, 15]
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Caveat: In experiments one measures protons ΣQp
r , R

p
12.

Additionally take into account also corrections due to finite range of
momenta of detected particles [ Karsch, Morita and Redlich, 15].

From the 2 independent expressions of ΣQB
r we extract

c12(Tf ,0, κ
f
2) = c12(Tf ,0)− κf

2D12.
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s1/2
NN [GeV]

(MQ/σQ2 )/(MP/σP2 )

(MP/σP2)2

QCD:      (Tf,0, κf2=0)
(Tf,0,κf2=0.02)

STAR: ptmax=2.0 GeV
ptmax=0.8 GeV

PHENIX/STAR2.0

 0.05
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 0.15
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 0.25

 0  0.2  0.4  0.6  0.8  1

200 62.4 39 27 19.6 11.5  7.7

This excercise give Tf ,0 = 147 MeV consistent with expectation that
its at or below Tc .
Curvature: κf2 < −0.012(15) → near to chiral curvature κB2 = 0.007.
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When do the open-charm hadrons melt

We want to understand when heavy quarks deconfine looking at the
properties of heavy-light hadrons.

The analysis of bound states through the study of spectral functions
difficult on the lattice.

If the charm hadron ensemble near the freezeout well described as a
hadron resonance gas characterized by T , µB , µC ,

P(µ̂C , µ̂B) = PM cosh(µ̂C ) + PB,C=1 cosh(µ̂B + µ̂C )

+ PB,C=2 cosh(µ̂B + 2µ̂C ) + PB,C=3 cosh(µ̂B + 3µ̂C ) .

The ground state mC=2 −mC=1 = 1 GeV : effect on
thermodynamics of C = 2, 3 baryons is negligible.
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It is comparatively easy to calculate the fluctuations +correlations of
B ,C

χBC
ij =

∂i+j

∂µ̂B
i ∂µ̂

C
j

Ptot/T
4

The partial pressures can be constructed out of χC
2 , χ

BC
11 and

χC
4 , χ

BC
31 , χBC

22 , χBC
13 . [ Bielefeld-BNL collaboration, 13]

Setting µ = 0 one can rewrite the partial pressures in terms of these
quantities like

PM = χC
2 − χBC

22 ,PB,C=1 ∼ χBC
mn ,m + n = 4
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A first glimpse at the charm baryons

We can for the first time look exclusively at the baryon sector

Sayantan Sharma RBRC Workshop on Lattice Gauge Theory Slide 14 of 24



A first glimpse at the charm baryons

We can for the first time look exclusively at the baryon sector

We consider two equivalent definitions of PB = χBC
13 = χBC

22

Sayantan Sharma RBRC Workshop on Lattice Gauge Theory Slide 14 of 24



A first glimpse at the charm baryons

We can for the first time look exclusively at the baryon sector

We consider two equivalent definitions of PB = χBC
13 = χBC

22

Our “order parameter” :χBC
13 /χBC

22 → independent of cut-off effects.
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A first glimpse at the charm baryons

We can for the first time look exclusively at the baryon sector

We consider two equivalent definitions of PB = χBC
13 = χBC

22

Our “order parameter” :χBC
13 /χBC

22 → independent of cut-off effects.

Baryons with charm and light degrees of freedom melt at Tc independent of
the details of the hadron spectrum. [ Bielefeld-BNL collaboration, PLB 14]
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Charm hadron spectrum...story about missing states

The charm meson sector is measured experimentally to quite good
precision.

Many charm baryons states not measured yet predicted from lattice
and quark models [ Ebert et. al, 10, Padmanath et. al., 13]

Even spin-parity of ground state Λc not measured!
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Relevance for QCD thermodynamics

We construct hadron resonance gas model with experimentally known
states: PDG-HRG
Compare with HRG with experimental+additional states: QM-HRG
The partial pressure of mesons are similar
In the baryon sector the difference starts showing up near Tc [ Bielefeld-BNL

collaboration, 14]
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Our results

Our methodology allows us to look
at charm baryon sector exclusively

Also look into the specific quantum
number channels

• all hadrons: pB
PM

=
χBC
13

χC
4 −χBC

13

• S=1,2 hadrons:
χBSC
112
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• Q=1,2 hadrons :
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QCD data seems to support the contribution of these additional baryon states to

thermodynamics near Tc . [ Bielefeld-BNL collaboration, 14]
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Non-perturbative nature of the QCD medium

Above Tc , deconfinement of the color degrees of freedom occur.

However the nature and/or existence of quasi-particles not well known
for T < 2Tc ⇒ any new insight to lattice data is clearly important.

Matrix model for SUc(3) with non-trivial Polyakov loop potential
could explain some of the essential features of strongly coupled pure
gauge theory above Td [ Y. Hidaka and R. D. Pisarski, 08,09]

Extension to chiral matrix model [ R. D. Pisarski and V. Skokov, to appear] by adding
2+1 f quarks coupled to a meson nonet of both parities through
Yukawa coupling + Potential for scalar fields symmetric under
SU(3)L × SU(3)R × Z (3)A to mimic QCD.
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χB
2 − χB

4 = 0 in hadron phase, non-zero values signal deconfinement of
quasi-particles carrying fractional B. [ BI-BNL collaboration, 13]

The Chiral Matrix model predictions for χB
2 − χB

4 [ R. D. Pisarski and V. Skokov, to appear]

seems to agree with the continuum extrapolated lattice data [Budapest-Wuppertal

collaboration, 14] for Tc < T < 2Tc .
The Hard thermal loop perturbation theory agreement with lattice data only
for ∼ 3 Tc .
Naive quark-meson model do not capture the physics ⇒ non-trivial
eigenvalues or holonomy of the Polyakov loop seems to play a significant
role for T < 2Tc .
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Does it hold true for charm too?
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Deviation from Hard Thermal Loop results already for T < 250 MeV [ BI-BNL

collaboration data , 14]
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collaboration data , 14]

Hadrons melt but may survive as broad excitations till 1.2Tc .
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Does it hold true for charm too?
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Deviation from Hard Thermal Loop results already for T < 250 MeV [ BI-BNL

collaboration data , 14]

Hadrons melt but may survive as broad excitations till 1.2Tc .

Pressure for broad “quasi-particles” considerably lower than small width QP
[ Biro & Jakovac, 14]
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Degrees of freedom beyond Tc?

We look specifically at the sector of strange and charm hadrons where S and
C quantum numbers are correlated only in the hadron phase.

Upto 4th order derivatives additionally one has 3 more measurements χBSC
[112]

apart from χSC
n+m and

pSC (T , µB , µC , µC ) =

1
∑

j=0

pB,S=j(T ) cosh

(

µC + µB − jµS

T

)

+

pM(T ) cosh

(

µC + µS

T

)

+ (pD(T )?).

pD = χBSC
[211] − χBSC

[112] = 0 for our data. Di-quarks carry color quantum
number... should disappear when quark d.o.f start dominating.

Sayantan Sharma RBRC Workshop on Lattice Gauge Theory Slide 22 of 24



Degrees of freedom beyond Tc?
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Meson and baryon like excitations survive upto 1.2 Tc .

Quark-quasiparticles start dominating the pressure beyond T & 200 MeV ⇒
hints of strongly coupled QGP [S. Mukherjee, P. Petreczky, SS, 15].

Strange baryon-like excitations suppressed than meson-like excitations.

These studies consistent with screening mass of sc-mesons [Y. Maezawa et. al., 15].
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Degrees of freedom beyond Tc?

For these calculations to be valid one should satisfy constraint
relations → smoothly connect to HRG and free gas at low and high T.
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Lattice data agree with the constraints imposed by our proposed
model [S.Mukherjee, P. Petreczky, SS, 15].
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What we learnt till now

For many fluctuation related observables the prediction from a hadron
Resonance gas already breaks down at T ∼ 140-145 MeV.

We took the lattice data and tried to constraint the experimental freezeout
curve assuming thermalization. The result for freezeout Tf = 147 MeV at
small baryon density consistent with expectation Tf < Tc .

For heavy quarks we observe that charm baryons too melt near Tc .

Additional charm baryons and resonances will contribute to thermodynamics
near Tc .

A similar contribution of these additional strange baryons and excitations ⇒
allows for a reduction of Tf by 5− 8 MeV [ Bielefeld-BNL collaboration, 14]

contrary to the flavour hierarchy picture at Tc .
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Perspectives

The QCD medium at T > Tc is non-perturbative, non-trivial
holonomy plays a role in explaining the fluctuation data.

For the charm sector, we observe baryon and meson like excitations
surviving in the medium till 1.2 Tc .

Open charm hadrons melt at Tc ⇒ freezeout temperature for Ds is
now well known
Input for heavy flavour transport models [ A. Beraudo et. al., 12]

Additional baryons may contribute to hadronic interactions near the
freezeout → can it explain the discrepancy for between flow and
suppression for D mesons?

Our study more in favour for resonant scattering of heavy quarks in
the medium [ M. He, R. J. Fries, R. Rapp, 12].
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